

Basic concepts of wafer cleaning

1 RCA cleaning process by Kern and Puotinen at RCA in 1970(1960 of development)

- 1.1 SC-1:standard cleaning 1 NH4OH-H2O2-H20(1:1:5 to 1:2:7 at 70 TO 80)
- 1.2 SC-2:standard cleaning 2 HCL-H2O2-H2O(1:1:6 TO 1:2:8 at 70 to 80)

- Above process are based on hydrogen peroxide

- At a high pH value SC-1 can effectively remove organic contamination and particles by oxidation.

- At a low pH value SC-2 can desorb metal contamination by forming a soluble complex.

Contamination	Possible source	Effects
Particles	Equipment,ambient,gas,deionize water,chemical	Low oxide breakdown
		Poly-Si and metal bridging
		inudced low yield
Metal	Euipment,chemical reactive ion etching(RIE), implantion ashing	Low breakdown field
		Junction leakage
		Reduced minority lifetime
		Vshift
Organic	Vapor in room, residue of	
	photoresist,storage	Change in oxidation rate
	container, chemical	
Micro roughness	Initial wafer material, chemical	Low oxide breakdown field
		Low mobility of carrier
Native oxide		Degraded gate oxide
	Ambient moisture,DI water	Low quality of epi-layer
	rinse	High contact resistance
		Poor silicide formation

Mechanisms for Removing particles and contaminations

1) Particles

1.1 Particle concentration (Number/mL)

	>= 0.2um	>=0.5um
NH4OH	130-240	15-30
H2O2	20-100	5-20
HF	0 - 1	0
HCL	2-7	1-2
H2SO4	180-1150	10-80

1.2 Particle adhesion is dominated by several mechanisms:

forces due to static charge on the particle or to van der Waals forces ,forces due to the formation of an electrical double layer,forces due to capillary action around the particle,and a

chemical bond between the particle and the surface.

- 1.3 Particle removal mechanism can be classified into 4 types.
- 1.3.1 Dissolution
- 1.3.2 Oxidizing degradation and dissolution
- 1.3.3 Liftoff by slight etching of the wafer surface
- 1.3.4 Electric repulsion between particles and the wafer surface

Metal contamination

-Start at a level of 1010atom/cm2

-Inducing

structral defects at the interface

stacking faults during later oxidation or epitaxial process,

increased leakage current of p-n junction,

- minority carrier lifetime
- Two mechanisms for precipitation of metal impurities
- 1) direct binding to the Si surface by the charge exchange between a metallic ion and hydrogen atom that terminated on the Si substrate.
 - ->not easy to remove in the wet cleaning process ,these metals usually noble metal ions such as Au,whose electronegativity is higher than that of Si and that tend to be neutralized by taking an electron from Si and to precipitate on the Si surface.
- precipitation of metal impurities occurs when oxide forms on the surface and metallic impurities are included simultaneously. Such as AI,Cr,and Fe tend to oxidize when the Si surface is oxidized and are included in the oxide film.

removed by etching the oxide with dilute HF.

HF-H2O2(HF:.5%,H2O2:10%)cleaning is effective in removing metallic impurities that bind directly with Si surface.Some additives,such as hydrocarbon-type surfactants,which are added to BHF(buffered HF) to improve its wettability of the Si surface,are also found to be effective in removing Cu at room temperature.

Both SC-1 and SC-2 have the capability of removing metallic impurities on the Si wafer, This is believed to result from the high oxidizing mechanism of the H2O2.

Metallic contamination on the surface also induces microroughness